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The Electron nuclear dynamics (END) theory is a time-dependent, nonadiabatic approach to molecular

processes. It has been implemented in the ENDyne code at the level of approximation that treats the nuclei
as classical particles and represents the electrons with a single complex spin unrestricted determinant. This
level of theory has been successfully applied to a wide range efdtom and ior-molecule reactive collisions.

In this paper the extensions of the END theory are outlined in some detail through a hierarchy of approximations

to the level of full guantum mechanical treatment of all participating particles.

1. Introduction recombination and ionization processes. (ii) The implementation
also needs to be general enough to allow for static correlation
(i.e., correlated treatment of electronic and nuclear initial and

:gaickng::lsedlzgigcrt]rlinkll\rl]gcllgfrreDStnzrrﬁchuFEph?g)(:ngr;;V?rg(rnover final states) as well as propagation of correlated state vectors.
many years. . y This problem has been addressed formally in the context of
its beginning been considered a general approach to molecular,

i L END?8 for electrons. It needs further details and generalizations
processes. However, its implementation in the ENDyne £ode . )
e ) L - to include nuclear dynamics.
is limited to the simplest approximation of electrons being 2031
described by a single complex Thouless determifamt the Cederbaum, Kppel, and Manthé<= have developed
atomic nuclei as classical particles in the narrow wave packet Meéthodology with the same goals as complete END, i.e., full

limit. Several applications have shown that this simple non- guantum mechanical description of all particles in a mole_cular
adiabatic approximation captures much of the physics of atomic Process. Such full quantum treatments are very demanding on
and molecular reactive procesded but is has also become ~ COMputer time and resources, and are therefore limited to small
clear that there are limitations to this level of treatment, SYS€MS. This is the main reason for why a complete END
particularly of a conceptual nature. approach has not yet been implemented. However, it is our view
In this paper we formulate the details of a complete END that significant progress can be made toward efficient imple-

implementation with all particles treated quantum mechanically, Méntation of complete END by drawing on the techniques of

and allowing for the possibility of full correlation between linear scaling, local correlation, and the local density ap-
electrons and between electrons and nuclei. This is done via aProximation (with or without gradient corrections) of density

complete active space (CAS) approach for the electrons, andfunctional theory (DFT). We _Ieave thg detai_ls of such treatments
full nonadiabatic Born-Huang treatment. to another paper, and limit our discussion here to a more

Quantum mechanics appears in many guises, such as-Schrotnventional implementation.

dinger amplitudes, Heisenberg matrices, Wigner phase space It is perhaps worthwhile to again emphasize that the END
distributions, or Feynman path integrals. END employs the phasePhase space representation naturally leads to a description in
space view that emerges from the use of coherent 3tated terms of nonorthogonal basis states. Conventional quantum
that may be called the Ehrenfest representationstead of mechanical treatments often prefer orthogonal basis states and
focusing on the linearity of Hilbert space and on representationsthe use of stationary state representations. While such repre-
in terms of stationary states, the Ehrenfest representationSentations are natural in the study of, say, absorption or emission
emphasizes nonlinear wave function parameters as dynamicappectroscopy they are less obvious in dynamics. Modem
variables. The Schitbnger equation then takes the form of an femtosecond experiments seem to show that stationary states
infinite dimensional Hamiltonian system of equations on this are more the exception than the rule. Furthermore, actual
parameter phase space. This formulation read”y permits full calculations often show that the use of nonorthogonal basis states
quantum description as well as mixed classical quantum for configuration interaction (Cl) and multiconfigurational self-
descriptions, such as the simplest END approximation. consistent field (MCSCF) can obtain accuracy comparable to
It is important to note a couple of points that must be that obtained with orthonormal basis states with expansions of
addressed. (i) The implementation of the dynamics of a orders of magnitude fewer terms. Therefore, the implementation
complicated wave packet should be such that it reduces to©f complete END will employ a nonorthogonal representation.
classical particle motion, when the quantum mechanical degreesOccasionally an intermediate step may be taken with an
of freedom are left off. Hell@® 27 has introduced such a ©Orthogonal representation, but the final expressions are just what
description with Gaussian wave packets, and we are using anNature seems to like: a mess of coupled dynamical variables in
extension of his approach. This capability is needed to describe@ curved phase space.
guantum mechanical nuclei in a phase space representation. It In the next section the basic END approximation is briefly
has the added benefit when used for electrons that it allows presented. The following section deals with the treatment of
END to describe electrenmolecule scattering, as well as free electrons in atomic and molecular dynamics. Then general
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Electron Nuclear Dynamics

END theory is introduced and classified according to classical
and quantum nuclei and also according to single electron
configuration versus multiconfigurational treatments.

2. The Basic END Approximation

The lowest level of approximation in the treatment of
molecular processes within the Electron Nuclear Dynamics
(END) theory consists of a single determinantal description of

the electrons and a classical or narrow wave packet description

of the nuclei. This means that the molecular wave function can
be expressed as
W)= [R(Y), P(Y)0(t), R(), P(H)0 (1)

where

IXIR(t), P(O)C= exp[— E(Xk 5
(RO, I:' 2\ b

+ Py (X — Rk)]

()
and
BXz(t), R(t), P()C= det{x;(x)} )
with
K
xi=u+ uz;(t) 4)
j=N+1

and where the atomic spiorbitals {ui}f in a travelling
Gaussian basis

u—mW—m%—wm+mhmt

P (= R)| (5)

are centered on the average nuclear positRmaoving with

velocity P/M.
The Lagrangian in the narrow nuclear wave packet limit is

i

aln S aln
L= P, +
JZ” ! 2( IRy
anS aln oln S ansS
)2
Z— —E (6)

whereS = (z, R, P'|z, R, POand E is the electronic energy
including the nuclearnuclear repulsion terms. The Euter
Lagrange equations

doL _ oL
dtag  oq (7)
yield the dynamical equations for the dynamical varialgjes
Ri: Pk, Zpn, and z’,;h, such that we can write
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where the coupling elements in the dynamical metric are

¥ns
(Cxdju = —2Im 9)
XYk 8Xik3YjI R=RP'=P
#nsS #n'S
( Xlk)ph = phag = (10)

023,07y4l per pr=p

3. Free Electrons in Molecular Reaction Dynamics

92,0 | R=rp=p

In the simplest implementation of END, the electronic basis
functions are centered on the average nuclear positions, which
are dynamical variables. In the limit of classical nuclei these
are the conventional basis functions used in molecular electronic
structure theory. The electronic basis in END follows the
dynamically changing nuclear positions. The evolution of the
nuclear positions and momenta are governed by equations of
motion that have the appearance of Newton’'s equations with
the Hellmana-Feynman forces. The electronic dynamical
variables are complex molecular orbital coefficients whose
evolution is governed by the equations that are like those of
the time-dependent Hartre&ock (TDHF) approximation. The
fact that the basis functions move with the dynamically changing
nuclear positions introduces terms that couple the electronic and
the nuclear dynamics. These coupling terms are the well-known
nonadiabatic coupling terms. In the field of atomic collisions,
such coupling terms are commonly eliminated by introducing
so-called electron translation factors.

The principal idea in extending END to be able to treat free
electrons (Note that the “free electrons” are indistinguishable
and part of a fully antisymmetric wave function for all the
system electrons.) as reactants and/or products is to center the
basis on independent positions in space. This means that the
basis function centers move on their own and are not associated
with nuclear positions. This makes the positiéhef these free
centers dynamical variables with conjugate momentahe
evolution of which must be governed by the END equations.
The derivation of these dynamical equations is quite straight-
forward using the time-dependent variational principle (TDVP).
The free center basis consists of functions, very similar to those
in eq 5, that can be expressed as

a—mW—m%—MW¢ﬁwﬂﬁﬁ

§P-(x - R)]>

(11

with x = (X, y, 2) an electron coordinat® the center position,
andP the average electronic momentum.

We first consider an END state vector with a single-
determinant electronic description and distinguishable nuclei in
the classical narrow wave packet limit. The system Nas
nuclei, N electrons, and the state vector is expressed in an
electronic basis of rank, the dynamical variables consist of
the nuclear coordinates and momenta

k=12,. i=1,2,3 (12)

{ oot Na,
the coordinates and momenta of the centers of the basis functions

that describe bound electrons (these centers are in a one-one
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correspondence to the nuclear average positions, but can evolve Tr(V oD = ZV‘k-wr“ 22)
independently) abab” /a A kil ji
{RPyd, k=1,2,..Ny, ]=1,2,3 (13) is used. The single-particle density matrix is denofedrhe

the coordinates and momenta of the free centers of the electronicEND equations become

basis
H o 0 H ovp . vl 5 . ulU I'

RuPd. f=12..N, =1,23  (14) N ’A(z)+ IR Ve AT PV A)(z) @3)

and the Thouless molecular orbital coefficients — v |°)F(I.)
{z}, h=1,2,..,.N; p=N+1,N+2,..K (15) z

correspond to a partitioning of the spiorbital basis ¢* u°), ZkZ|e2(,ok -p)
where the first part contains those spirbitals that are = =V,E= ) ————— - TV, ) (24)
occupied and the second part those that are unoccupied in the = o= pl

reference determinantal wave function.

The choice of the number of free centéisis made so that
it corresponds to the expected number of active electrons, i.e.,
for single ionization of a system in a collision with a structure-
less projectile such as a proton, one free center in the target is
eno.ugh, while for, say, electron scattering one free center |s;[CR RRI +Cq Ppl] _ 2ImTr(CTR 7 =
assigned to the reagent free electron, and additional free center: kel Kl k
may have to be chosen in the target system should the collision Tr(V hI' — Vi, AThT) +
energy be such that ionization processes are likely, such as occur Ri Ri
in (e,2e) spectroscopy.

The notations used are defined in reference 1, particularly
section 11.B. The metric matrix of the spirorbital basis is

5 = Tk
Py = Mk (25)

Tr

1
Tr(EkaVab;abr - vRkArVab;abF) FL (26)
a

.« A> and
A A
Av Ao
The superscripts of the blocks in the matrix have the following
meaning: The full $” and empty “o0” circles denote the occupied Tr(VthF - VPkAI“hF) +
and unoccupied blocks. Because in general the occupied space 1
is smaller than the unoccupied space, the upper-right off- Tr[Tr(—VPV L — Vo ATV, ,br) r] (27)

. . " abal Py abjal
diagonal block has the shape of a lying rectangle, hence the 2 a Jb
arrowlike superscript*” pointing to the right. Similarly, the
lower-left block is shaped like a tall rectangle as indicated by The electronic basis centered on the positions of atomic nuclei
the arrowlike superscript\V” pointing down. We use the  are standard bound state basis functipu$, suitable for the

A= (16)

Z[CkaIR, +CppPl — 2ImTr(C'p2) =

intermediate compound variables particular element, while the electronic basis on a free center
contains the uniodw} = {u} U {#} of the complete bound
v=—(AY+A%2) (A" +A2)? a7) state basis and a diffuse set of functi¢mg . To create an initial

) . state, where the “free electron” is initially bound, one performs
which are elements of th&(— N) x N matrix. We also need 5 SCF calculation for the system ground state (or possibly an
the Fock matrix excited state) in the bound state basis to obtain the SCF orbitals

_ ¢ = ZkCki. Then the initial state component on a free center
F=h+Tr(Vayal)a (18) in a potential ionization process is formed using the projector
with the matrixh of single-particle integrals, which for electrons  WIWIWI W] as
are
*= ZW|(A71)|mme|¢k|:| (28)
h2 Na Zke2 m
hy = [ ur )| ——V* - Z— u(r) &’ (19) ' o
2m K=1r — Rk|2 In an electron scattering or recombination process the free center
of the incoming electron has the functiohsi} = {u} U {u},
and the matrixV of two-particle integrals where now the initial state of the free electron is some function
v; the width of which is chosen on the basis of the electron
Vi = W KIC= 0 |IkD (20) momentum and the time it takes the electron to arrive at the
] target. This has to be done in such a manner that the natural
with spreading of wave packets does not cause nonphysical behavior.
N Y More flexible wave functions may be constructed. For
] kiD= fui (r)y; (rZ)uk(rl)ul(rZ)dsr & 1) instance, one may choose some, Blay, nuclei e.g. described
=2 as in eq 2 and with no electronic basis functions centered on

[ry — 1yl
them, and some, sa)la, nuclei with conventional electronic
for electrons and where the notation basis functions, and finally have some, &y free centers with
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TABLE 1: The Three Meaningful Combinations of Thouless coherent stdte|z, R, P[] and the CASMC wave
Electronic Structure (single, SES, and multiple, MES) and function is the vector coherent st&&, d.|z., R, PL{see section
Geometry (single, SG, and multiple, MG) 5.1).
SG MG 4.4. Nuclei.The molecular descriptions discussed above can
SES W (X, x, R P) not meaningful all be employed with classical nuclei. Even if many processes
MES S, (X, R P) Sy Co W (X, X, Ry, Py) can successfully be described with classical nuclei, it is

. ) . ) sometimes necessary to use a fully quantal description of
basis functions as in eq 11. In a particular molecular process molecules and in the END framework it is clearly possible to
some combination of these possibilities may be used. do so.

One common choice of molecular wave function proceeds
4. General END Theory by a configuration interaction (Cl), i.e. a superposition of
Presentation of the possible realizations of END theory can orthogonal configurations approach, which leads to extremely
be done with the aide of a four-dimensional table. Each of the long expansions and is therefore computationally not optimal.
four axes of this table lists two properties of the END wave The END approach looks for more efficient parametrization than
function, such that is provided by linear expansion coefficients. Nonlinear de-
1. single (time-evolving) geometry (SG) versus multiple pendence on parameters is often a better choice. The success
(time-evolving) geometries (MG), of the Born-Oppenheimer (BO) approximation and the clamped
2. single (time-evolving) electronic structure (SES) versus nuclei approximation implies that the classical nuclear coordi-
multiple (time-evolving) electronic structures (MES), nates are a good starting point for parametrization. In its simplest
3. single-determinant wave function (SD) versus complete implementation END is derived as the narrow wave packet limit
active space multiconfigurational wave function (CASMC), and of frozen Gaussian wave packets for the nuclei. It can be seen
4. classical nuclei (CN) versus quantal nuclei (QN). from the dynamical equations, as was first pointed out by
Of the possible 2= 16 entries in this table, only 12 cases Heller?27 that the structure of the equations is the same
are useful. One of these is the minimal implementation of single whether one takes the zero width limit or not. Only a slight
geometry, single electronic structure, single determinant, and renormalization of the matrix elements occurs, and the qualita-
classical nuclei. The terminology introduced in this table is given tive dynamics is the same.
proper definition in the following. END considers a basis for the nuclear orbitals centered at
4.1. Geometries.The termgeometryis defined to mean a  parametric position® and with nuclear momentum factors, just
point in the generalized phase space for the total number oflike ETF's for electrons, with momentun®. These basis
centers used to describe the END wave function. The notationsfunctions are denotejs, R, PCffor ans-type orbital (or a set of
R, P are used for the position and momenta vectors, such thats-type orbitals) ik, R, PO( = x,y, z k=1, 2, ...,Na) for the
p-type orbitals)jkil, R, PCfor the d-type orbitals, etc. It is now
R=(Rwk=1,...,Nys + Nc+ Ngp) (29) possible to define a fully quantal molecular wave function,

similar to a Borr-Huang series and corresponding to a single

whereN, is the number of atomic nuclei (centers of traditional determinant for the electrons:

electronic basis functions)\r the number of free electron

centers, andNon the number of nuclear centers with no basis . a

functions attached. These coordinates can be classical position§|5v R, Plz, R, PLH- ZvijK R, PEIa—|z, R, PLH

and momenta when the nuclei are treated as classical particles, I Ry

or average positions and momenta when they are treated as o 9

quantum particles. Z Yjalikil, R, PB——+z R, P} ... (30)

4.2. Electronic Structures.We define arelectronic structure Pkl kO
to be an electronic wave function associated witteametry . L .
If the electronic structure is a single determinant, then multiple A Bomn—Huang SEeries uses all electronlc_elgenstates |r!stead of,
different electronic structures associated with the same geometry?S here. the derivatives of one electronic wave function. The
is a meaningful description. One can also conceive of multiple” €/ECrONiC wave functionz, R, PLis not an eigenstate of the

geometries each evolving independently with its own electronic electronic Hamiltonian. The meaning of thmsatm_s that it
structure. However, it is not meaningful to consider multiple expresses a BO type correlation between electronic and nuclear

geometries with a single electronic structure, because theBorn tmhf)“on- Thle tf'|rst tgrm is the sm(wjples: E':? wa\llqe ftl;]nctlon, whetrg
Oppenheimer approximation provides such a good description. IS correafltk)]n k:s _exfpresse Oné rglégp Tk? paramé-:- ne
Table 1 summarizes the combinations of geometry and elec-geometry of the basis function cent&tand byP. The secon
tronic structure. The symbolX and x denote the quantum term expresses that nuclear motion in ¥hg, or zdirections is

mechanical coordinates of the nuclei and the electrons, respecﬁorrelfit;[eg t\>N ith S_p?CIf:C gharlmt:;es 'T E.he e:ject_ror:_lc St“fCtur?haS
tively. The indexu runs over electronic structures apdver escribed by an infinitesimal transiation (. erivative) along the
geometries. respective Cartesian direction. To provide a more efficient

4.3. Configurations. The choice of wave function to be used notation for this type of wave functions a derivative operator,

for the electronic structure can in principle be any of the |
constructions found in electronic structure theory. However, the =z, = 9
choices used here are limited to wave functions that can be ¢ 0R,+0R,
classified as single- and multiconfigurational, and for the latter

only complete active space (CAS) wave functions are consid- is introduced, where = (w1, ... o) = (jiKi, ..., jik) is al-tuple
ered. The reason for this is that such wave functions have aof Cartesian coordinate indices. The combination of electronic
well-established coherent state description, such that dynamicsand nuclear wave function is shown in Table 2.

in terms of them can be constructed as a Hamiltonian system The three entries in Table 1 can now be combined with the
on a well-defined phase space. The single determinant is thefour entries in Table 2 to show the full set of 12 possible END

(1)
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TABLE 2: Single Determinantal Electronic Wavefunction TABLE 3: The Twelve Possible END Implementations
(SD) or a CASMC Wavefunction Combined with Classical Using Single (SG) or Multiple (MG) Geometry, Single (SES)
Nuclei (CN) or Quantum Nuclei (QN), Respectively or Multiple (MES) Electronic Structure, Classical (CN) or

Quantum (QN) Nuclei, and the Associated Generalized

CN QN Phase Spaces

SD IRPOz R, P Zottoll, , R PE|z, R, PO eom- electronic configur-
CASMC  IRPLE dz, R PL Ziowiobll, o, R, AE |2, R, PO type getry structure atic?n nuclei END phase space
implementations. From END type 1 through 12 one can discern 1 56 SES SD CN R P,z

. ; L S-S - 2 SG MES  SD CN RP,c, 2,
an increasing flexibility, most of which is inspired by physical 3 MG MES  SD CN R, P, Cu» 2z,
problems that may not be possible to describe satisfactorily with 4 sG SES CASMC CN RP,d,z
a wave function of simpler type. Furthermore, this hierarchy of 5 SG MES CASMC CN R, P,c,, du, Za,
types is designed to allow systematic improvements with 6 MG~ MES  CASMC CN R, Py, Cy, QoyZay
incremental effort over the results obtained with classical nuclei. ; gg ,\SA'IEESS SSDD SNN Ev E* e 2
Type 2 wave functions introduce simple multiconfigurational g s MES  SD ON Ry lgﬂ”'“;:m"“é‘ 2,
structure making it possible to achieve proper spin multiplicity. 19 sG SES  CASMC ON RP, o duz
Wave functions of type 3 permit the description of two or more 11 SG MES CASMC QN R P, viy, Cu, G, Za
open channels with nonnegligible probabilities. During, say, a 12 MG MES  CASMC QN Ry, Py, viay Cuys Shauys Zauy

reactive encounter the geomemy, P, initially evolves with a

single determinant electronic description, then when a secondWwhich are present in all configurations and an active space, some

channel becomes active two geometries may evolve to their of the orbitals of which may be occupied and some not in each

respective final states, each with its own electronic structure. configuration.

Types 4, 5, and 6 add the capability to base END on CASSCF  LetN be the number of electrons akdhe rank of the spir

quality electronic structure theory. CAS has been chosen becaus@rbital basis. The core space, i.e. the spnbitals occupied in

it allows a straightforward coherent state representation, which all determinants, has dimensit. We denote by, the number

forms the foundation of END phase space dynamics. of spin—orbitals that may be occupied in some determinant.

The wave functions of types-712 duplicate types46 but ~ This is the dimension of the hole space, wile- K is the

with full quantum mechanical description of the nuclei. The dimension of the particle space. The so-called active space of

expansion in for wave functions of type 7 is not expected to SPin—orbitals has the dimensidg, — Ki. Thus, we have that

be used for high values. Rather, it is being used to “flex out” 0 = Ki =N =Kz = K. _ _

a classical trajectory to exhibit the quantum mechanical quality. ~ Neither are the occupied (core) orbitals and the active space

In applications that require the full range of quantum mechanical Orbitals necessarily orthogonal among themselves, nor to each

flexibility, for instance those where tunneling may be important, Oother. However they are orthogonal to the unoccupied or particle

wave functions of type 9 or 12 should be used with a grid of SPace, whose orbitals also can be mutually nonorthogonal. This

geometries to cover configuration space completely and ef- meéans that the CASMC electronic wave function cons_,ldered

ficiently. Such calculations could probably be done with here is an expansion in a set of nonorthogonal determinants

sufficient accuracy with expansions through 2.
.z R PO= Y dz R PO (32)

5. Dynamical Equations <

The dynamical equations for type 1 have been published andwherex = (h,, ..., hy) is a comfiguration label with the indices

tested extensively in the program ENDyrend are reviewed  h < K, in the hole space (core plus active space), @&, PLl
in section 2. Applications to numerous reactive collisions of s the determinant

ions, atoms, and molecules have been undertaken and published

with, _ir_1 general, g_o_c_)d agreement with the best experiments for det{ y,, ()} (33)
transition probabilities, differential, and total cross sections '
obtained with semiclassical corrections. The ENDyne code has
been completely rewritten in Fortran 95 during the last year to
allow the 11 other types to be implemented. Some of that effort K K
is work in progress. _ —

The dynamical equations can be derived following the same T, = Uy + :Z+ L U, = Uy, :ZJr L Uz (34)
approach as for typellto obtain the EulerLagrange equations P P
for all dynamical variables in the last column of Table 3. An
explicit listing of these equations is far more complex than what
is useful in this type of publication. Instead the general structure
of the equations is presented and methods of solution discusse

5.1. CASMC. In this section, the wave function of type 4 is
discussed. The theoretical foundation for END in terms of a 7o, — p)
multiconfigurational electronic wave function using a complete . 4 (o — P —THV hT
active space (CASMC), sometimes referred to as CASSCF, has M= 3 I Py )
been introduced in terms of an orthonormal basis and with a e pl
fixed nuclear framework. We extend this treatment here to a
nonorthogonal basis of free centers with electron translation P =
plane wave factors. The orbital space is divided into an occupied M
or hole space and an unoccupied or particle space. The hole
space is further divided into a core space consisting of orbitals, for the atomic nuclei without basis functions, and

with

The total molecular wave function is chosen RAE(t)0=
IR(t),P(t)dd(t),z(t),R(t),P(t)(see eq 2), and the Lagrangian is
calculated in the narrow nuclear wave packet limit. This leads
(o

Ze (35)
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= = |l T4 TABLE 4: The Behavior of the Lagrangian for the Relevant
Z(CRkRIR' + CrpPi) +2IMT(Cg 2) + 2IMDg, d Cases of Differing Geometries and Nonzero Widths and the
Limits to Equal Geometries and Zero Widths
=—-VgE width/geometry ~ Ri= R, lim R, — R Ri=R
by, b= 0 Ly + Lo+ Lo continuous Li+ Lo+ Ly
=Tr(Vg hI' — ) di Vg AT 0y:) (36) bi—0,b,—0  continuous continuous
k nd k b1:b2:0 |_1+L2 L1+L2 I—1""'—2‘*"—12
1 @ y 2 where
= Tr|Tr EVRkVabiabr - ZdKVRkVab;abrKK’dK’
KK b
K; =, R|R,|D, — HIR, 0z, R,O (42)

and an analogous equation fog,E for the atomic and free

center degrees of freedom. In addition, the dynamical equationsand so on. This means that the Lagrangian has the form

for the electronic parametedsand z given in ref 32 are to be

added. L=LtL,+ Ly (43)
5.2. Multiple Geometries.In this section types 2, 3, 5, and

6 are discussed. Specifically two electronic structures with tWo qpqerye that the limit of zero widths is not consistent with equal
geometries are considered and for clarity thelependence is  goometries. Because the nuclear wave functions are Gaussians,
omitted. The END wave function, then, is Gi.is zero only at very large separations, and the only way the
limits of zero widths and equal geometries can be made
consistent is foF1, = 0. However, such a constraint is artificial

. . . . . within the END framework. The question is then to resolve this
To avoid redundant unphysical dimensions in the parameterinconsistency in taking the limit of classical nuclei.

phase space the normalization is chosen such that the coefficient Throughout the development of END, one of the guiding

of the first term is unity. The global phase can be recovered . . : : . - S .
(see ref 33). The dynam)ilcal vari?able ex%ressing the configuration principles in resolving apparent inconsistencies is to consider
: the full quantum mechanical expression. In this particular case

mixing IS C. The dynamics may lead to regions of very lame the conclusion is that the widths of the nuclear wave packets
values implying that_the system state evolves to pecome purelymust be kept finite in all expressions leading to the TDVP
IRolJzo, Rl The differential ‘equation solver in ENDyne o0 "o simplicity the widths are kept the same for all

automatically switches 1 and 2 so that the new ¢ evolves to geometries. The situation is different for the Hamiltonian terms.

ﬁgiﬁévcs\/vgv?e g?lf:t flci)rLitE’;lo? :%Eenﬁélz]:r m;er?tolfs tﬁ\oe tikgtgrf Apart from a constant zero-point energy for each nuclear wave
P P y acket, the kinetic energy is the classical expres&idn—1P2.

\év(?r:/sefrl#]?gtlOtEIeHS(:\;\e;\igrao?(i\;]velslf;erg(r)\\lviQr?evsﬁéﬁ ?ﬁeaﬁg:ﬁsosfe he zero-point energy of Gaussian wave packets is not useful
9 grang and is eliminated in the END calculations because it is just a

z\e;gcl)u\t,;/cl)?lthgsogs toOéSSaGI Zgozr%;riﬁi?; fpcz)zr)_ﬂ]ﬁhgadsi?r;?;[tthe constant energy shift. To account for zero-point'vibrational
scenarios are displayed in Table 4. energy effect_s in m(_)lecular reactions, a more flexible nL_chear
Let M be a diagonal matrix with nuclear masses, then write * 2"c packet is required, as expressed by th_e wave fun_ctlons of
the END Lagrangian as ’ types 7—12._ The true effects are relatgd to differences in zero-
point energies caused by changes in vibrational frequencies from
1. ) 14 5 1 . ) one molecular state to ar_mther. Frozen Gaussians cannot desgribe
L= E[PlRl —RP,] — EM P, + §[P2R2 —RP,] — such effects. The potential energy goes to the values for classical
1 nuclei when the limit for zero widths is taken. It is computa-
éMfle2 +[W|D, — HWIW /W (38) tionally more efficient to use the values obtained with classical
nuclei rather than to compute the nuclear expectation values
for the Hamiltonian terms. The electronic expectation values

[Pl R Uzy, RyLH ClR iz, Ry (37)

with
are, of course, computed.
ird d With the widths kept finite the physical content of the wave
D = 5’& Tt (39) function in eq 37 is correct. The electronic structures evolve

independently, when geometries are far apart, and interact when
and where the tilde means that the derivative is acting to the geometries are close.
left. The overlap With the expressions in eqs 38, 40, and 41, the Lagrangian
can now be expressed as
S= Ry|R, [z, Ry|z, R Ry Ry, Ry|Zy, Ro[H-
CIR [R,[I2y, Ry|Z5, RoLH C*[Ry|Ry 2, Ry[ 2y, Ry L= L= %[Pllfi| - RP]— %M71P12 + Ky (z, R)/S+
G,F, + G,F, + cGyF;, + ¢*GiFT, (40) 1. . 1 1 > )
§[P2R2 —RP,] — EM P,” + Ky(z, R)Ic|/S+
is again an important quantity for the dynamical metric. An i i
important part of the Lagrangian is E[GZFZC* + G FJe/IS— E[Gzec + G Fi]ef/S+

. * ok
K = [(W|D, — HIWE= K, + Kylo + 5GF,(ce — ct) + KugllSHKLTS (44)

[ * [ As before the chain rule of differentiation can bring out the
+1 +Kict — x ¢ a
Ki 2612F12C K ZGleIZC (41) explicit dependence on the parameter velocities, such that
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advantageous to use internal degrees of freedom, while for larger

L =3P+ QIR + Jlwiz, — 012,] +5[P, + QIR + systems this is not that important. The geom@&fgr the wave

i, e . 1 15 1 .15 function in eq 30 can be considered to be either laboratory or
E[wzzz T Wzl + E[a ¢—at] - EM P - QM P—E internal coordinates. The theory works for both cases. The
(45) structure of the Lagrangian for such a wave function is the same
as that for the type 2 and 3 wave functions with the change
i.e., obviously referring to two coupled systems, where we have that the nuclear and electronic parts have different forms instead
omitted the total derivative of just depending on different sets of parameters.
d Considering the expansion only through= 1 the wave
&[lel + P,R)] (46) function can be expressed as
. 0
used to eliminatd® and where |W= |Rz, RCH ZUK|RK%EK|Z, RO (52)
E=[WH, WIS 47)

where again the normalization has been chosen such that the
including the nuclearnuclear repulsion energy. In analogy with  coefficient of the first term is 1 to avoid redundant dimensions
the simplest END (type 1) approximation (see ref 17 and eq 6), in phase space. The Lagrangian now is simply

the conjugate momenta to theR, and ¢ dynamical variables
are L=[W|D, — HYIW/¥[ (52)

G, 0F;,  GpcoFy, and explicitly showing the time derivatives one can write
o= "t
Y Sez S oz 1. i i
L=-0QR+ [w*z— wZ] + - Z[u’;i/k —ui —E  (53)
G, OF, _ Gif* iF}, 22 2

=4 —— 48
) SaZ; S 323 ( )

with E = (W|H|WIW/WL]i.e., the full molecular expectation

value including the nuclear kinetic energy terms. The conjugate
G,F, GciF,, momenta to the dynamical variabl&s z, and vk are

P,+Q,=P,—Iml= ==+

SR, S R F oG 10F G GoF Gy o°F
Q=-Im[—-—+) ~——+——+ ) —
B 4O P G,oF, Gic* oF:, 4 SR SR, R  SoR S 979
2 Q2 — M2 m S aRZ S 3R2 ( ) (54)
G oF Gy oF
and =ty ——
S ozt S IR,
a=[G,F,c+ GFl/S (50)
and
respectively.
The Euler-Lagrange eqs 7 fay = z, 2, Ry, Ry, andc then L=0G oF " (55)
yield the END dynamical equations. The structure of the END K kaRk k

theory is such that all the ingredients of the equations for the

type 1 wave function can be reused. The only additional feature Here the definitions of, G, and G should be evident from
being F12 and its derivatives. Because of the analyticity of the analogy with the definitions in eq 40. The matrix elements
F,.Z, 2), a property of the coherent state representation, it is "equired are higher derivatives of the kind that has been dealt
a straightforward extension &fy(Z. z;). The overlap (eq 40)  With before. o ,
and the momenta depend d. yielding more complex Implementatlorjs of second-prder denyatweg already exists
expressions for the dynamical metric than is the case for type for the construction of dynamical equations with expansions

1, but otherwise the structure of the dynamical equations is the throughl = 1. The PRISM algorithm has been implemented to
same as for the simplest case. arbitrary order, which will allow the development of END with

This completes the analysis for the cases of multiple Wave functions of type #12. Written in Fortran 95, it is
geometries and a single determinant for the electronic structures Structured to exploit both multithreading shared memory and
i.e., types 1 and 2. The corresponding analysis for the CASMC MPI d|str|butt_ad memory parallelism. It has been designed both
types of electronic structures is completely analogous. The as an extension to Tcl and Python and has both Tcl and Python

equations are, like those of higher order coupled cluster theory,imoedded in it. This has been done with the aim to allow more
better left to computer manipulations.

flexibility in using advanced features (extension) and to support
5.3. Quantum Nuclei.This section deals with wave function  apid prototyping of the complex wave functions discussed in
types 7#12. Because the END wave function with multiple

this paper (embedding). The redesigned ENDyne version 5 is
geometries is already formulated with Gaussian wave packets,"OW nearly complete.

the extension to full quantum nuclei with the flexibility to

employ arbitrary nuclear wave functions is fairly straightforward.
The wave function in eq 30 is constructed from products of  The complete design ideas of the END theory and our vision
Gaussian type orbitals for the nuclear degrees of freedom andfor its implementation have been discussed in some detail. It
derivatives of electronic structure wave functions with respect should be clear from this discussion that END provides a
to such degrees of freedom. For small systems it is often smooth, practical, and efficient hierarchy of descriptions of

6. Conclusion
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molecular processes, that ranges from classical nuclei with a  (11) Longo, R.; Diz, A.; Deumens, E;;@n, Y. Chem. Phys. Let1994
i ; 220, 305. )
single E.ND deter.mmam f_Ol‘ the electrons to a fgll quantum (12) Diz, A.; Chrn, Y.; Sabin, J. RNucl. Instrum. Methods B995
mechanical description with CASMC wave functions for the ggg 633.
electrons. (13) Morales, J. A.; Diz, A. C.; Deumens, E.héh, Y. Chem. Phys.
Lett 1995 233 392.
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