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The Electron nuclear dynamics (END) theory is a time-dependent, nonadiabatic approach to molecular
processes. It has been implemented in the ENDyne code at the level of approximation that treats the nuclei
as classical particles and represents the electrons with a single complex spin unrestricted determinant. This
level of theory has been successfully applied to a wide range of ion-atom and ion-molecule reactive collisions.
In this paper the extensions of the END theory are outlined in some detail through a hierarchy of approximations
to the level of full quantum mechanical treatment of all participating particles.

1. Introduction

This paper is dedicated to William H. Miller. It is a pleasure
to acknowledge his kind interest and support of our work over
many years. Electron Nuclear Dynamics (END) theory1 has from
its beginning been considered a general approach to molecular
processes. However, its implementation in the ENDyne code2

is limited to the simplest approximation of electrons being
described by a single complex Thouless determinant,3 and the
atomic nuclei as classical particles in the narrow wave packet
limit. Several applications have shown that this simple non-
adiabatic approximation captures much of the physics of atomic
and molecular reactive processes,4-21 but is has also become
clear that there are limitations to this level of treatment,
particularly of a conceptual nature.

In this paper we formulate the details of a complete END
implementation with all particles treated quantum mechanically,
and allowing for the possibility of full correlation between
electrons and between electrons and nuclei. This is done via a
complete active space (CAS) approach for the electrons, and
full nonadiabatic Born-Huang treatment.

Quantum mechanics appears in many guises, such as Schro¨-
dinger amplitudes, Heisenberg matrices, Wigner phase space
distributions, or Feynman path integrals. END employs the phase
space view that emerges from the use of coherent states22 and
that may be called the Ehrenfest representation.17 Instead of
focusing on the linearity of Hilbert space and on representations
in terms of stationary states, the Ehrenfest representation
emphasizes nonlinear wave function parameters as dynamical
variables. The Schro¨dinger equation then takes the form of an
infinite dimensional Hamiltonian system of equations on this
parameter phase space. This formulation readily permits full
quantum description as well as mixed classical quantum
descriptions, such as the simplest END approximation.

It is important to note a couple of points that must be
addressed. (i) The implementation of the dynamics of a
complicated wave packet should be such that it reduces to
classical particle motion, when the quantum mechanical degrees
of freedom are left off. Heller23-27 has introduced such a
description with Gaussian wave packets, and we are using an
extension of his approach. This capability is needed to describe
quantum mechanical nuclei in a phase space representation. It
has the added benefit when used for electrons that it allows
END to describe electron-molecule scattering, as well as

recombination and ionization processes. (ii) The implementation
also needs to be general enough to allow for static correlation
(i.e., correlated treatment of electronic and nuclear initial and
final states) as well as propagation of correlated state vectors.
This problem has been addressed formally in the context of
END28 for electrons. It needs further details and generalizations
to include nuclear dynamics.

Cederbaum, Ko¨ppel, and Manthe29,30,31 have developed
methodology with the same goals as complete END, i.e., full
quantum mechanical description of all particles in a molecular
process. Such full quantum treatments are very demanding on
computer time and resources, and are therefore limited to small
systems. This is the main reason for why a complete END
approach has not yet been implemented. However, it is our view
that significant progress can be made toward efficient imple-
mentation of complete END by drawing on the techniques of
linear scaling, local correlation, and the local density ap-
proximation (with or without gradient corrections) of density
functional theory (DFT). We leave the details of such treatments
to another paper, and limit our discussion here to a more
conventional implementation.

It is perhaps worthwhile to again emphasize that the END
phase space representation naturally leads to a description in
terms of nonorthogonal basis states. Conventional quantum
mechanical treatments often prefer orthogonal basis states and
the use of stationary state representations. While such repre-
sentations are natural in the study of, say, absorption or emission
spectroscopy they are less obvious in dynamics. Modem
femtosecond experiments seem to show that stationary states
are more the exception than the rule. Furthermore, actual
calculations often show that the use of nonorthogonal basis states
for configuration interaction (CI) and multiconfigurational self-
consistent field (MCSCF) can obtain accuracy comparable to
that obtained with orthonormal basis states with expansions of
orders of magnitude fewer terms. Therefore, the implementation
of complete END will employ a nonorthogonal representation.
Occasionally an intermediate step may be taken with an
orthogonal representation, but the final expressions are just what
Nature seems to like: a mess of coupled dynamical variables in
a curved phase space.

In the next section the basic END approximation is briefly
presented. The following section deals with the treatment of
free electrons in atomic and molecular dynamics. Then general
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END theory is introduced and classified according to classical
and quantum nuclei and also according to single electron
configuration versus multiconfigurational treatments.

2. The Basic END Approximation

The lowest level of approximation in the treatment of
molecular processes within the Electron Nuclear Dynamics
(END) theory consists of a single determinantal description of
the electrons and a classical or narrow wave packet description
of the nuclei. This means that the molecular wave function can
be expressed as

where

and

with

and where the atomic spin-orbitals {ui}1
K in a travelling

Gaussian basis

are centered on the average nuclear positionsR moving with
velocity P/M.

The Lagrangian in the narrow nuclear wave packet limit is
simply

whereS ) (z, R′, P′|z, R, P〉 and E is the electronic energy
including the nuclear-nuclear repulsion terms. The Euler-
Lagrange equations

yield the dynamical equations for the dynamical variablesq )
Rjk, Pjk, zph, andzph

/ , such that we can write

where the coupling elements in the dynamical metric are

3. Free Electrons in Molecular Reaction Dynamics

In the simplest implementation of END, the electronic basis
functions are centered on the average nuclear positions, which
are dynamical variables. In the limit of classical nuclei these
are the conventional basis functions used in molecular electronic
structure theory. The electronic basis in END follows the
dynamically changing nuclear positions. The evolution of the
nuclear positions and momenta are governed by equations of
motion that have the appearance of Newton’s equations with
the Hellmann-Feynman forces. The electronic dynamical
variables are complex molecular orbital coefficients whose
evolution is governed by the equations that are like those of
the time-dependent Hartree-Fock (TDHF) approximation. The
fact that the basis functions move with the dynamically changing
nuclear positions introduces terms that couple the electronic and
the nuclear dynamics. These coupling terms are the well-known
nonadiabatic coupling terms. In the field of atomic collisions,
such coupling terms are commonly eliminated by introducing
so-called electron translation factors.

The principal idea in extending END to be able to treat free
electrons (Note that the “free electrons” are indistinguishable
and part of a fully antisymmetric wave function for all the
system electrons.) as reactants and/or products is to center the
basis on independent positions in space. This means that the
basis function centers move on their own and are not associated
with nuclear positions. This makes the positionsR of these free
centers dynamical variables with conjugate momentaP, the
evolution of which must be governed by the END equations.
The derivation of these dynamical equations is quite straight-
forward using the time-dependent variational principle (TDVP).
The free center basis consists of functions, very similar to those
in eq 5, that can be expressed as

with x ) (x, y, z) an electron coordinate,R the center position,
andP the average electronic momentum.

We first consider an END state vector with a single-
determinant electronic description and distinguishable nuclei in
the classical narrow wave packet limit. The system hasNA

nuclei, N electrons, and the state vector is expressed in an
electronic basis of rankK, the dynamical variables consist of
the nuclear coordinates and momenta

the coordinates and momenta of the centers of the basis functions
that describe bound electrons (these centers are in a one-one
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correspondence to the nuclear average positions, but can evolve
independently)

the coordinates and momenta of the free centers of the electronic
basis

and the Thouless molecular orbital coefficients

correspond to a partitioning of the spin-orbital basis (u• u°),
where the first part contains those spin-orbitals that are
occupied and the second part those that are unoccupied in the
reference determinantal wave function.

The choice of the number of free centersNF is made so that
it corresponds to the expected number of active electrons, i.e.,
for single ionization of a system in a collision with a structure-
less projectile such as a proton, one free center in the target is
enough, while for, say, electron scattering one free center is
assigned to the reagent free electron, and additional free centers
may have to be chosen in the target system should the collision
energy be such that ionization processes are likely, such as occur
in (e,2e) spectroscopy.

The notations used are defined in reference 1, particularly
section III.B. The metric matrix of the spin-orbital basis is

The superscripts of the blocks in the matrix have the following
meaning: The full “•” and empty “o” circles denote the occupied
and unoccupied blocks. Because in general the occupied space
is smaller than the unoccupied space, the upper-right off-
diagonal block has the shape of a lying rectangle, hence the
arrowlike superscript “>” pointing to the right. Similarly, the
lower-left block is shaped like a tall rectangle as indicated by
the arrowlike superscript “∨” pointing down. We use the
intermediate compound variables

which are elements of the (K - N) × N matrix. We also need
the Fock matrix

with the matrixh of single-particle integrals, which for electrons
are

and the matrixV of two-particle integrals

with

for electrons and where the notation

is used. The single-particle density matrix is denotedΓ. The
END equations become

and

The electronic basis centered on the positions of atomic nuclei
are standard bound state basis functions{ui}, suitable for the
particular element, while the electronic basis on a free center
contains the union{wi} ) {ui} ∪ {Vi} of the complete bound
state basis and a diffuse set of functions{Vj}. To create an initial
state, where the “free electron” is initially bound, one performs
an SCF calculation for the system ground state (or possibly an
excited state) in the bound state basis to obtain the SCF orbitals
φi ) Σkukcki. Then the initial state component on a free center
in a potential ionization process is formed using the projector
|w〉〈w|w〉-1〈w| as

In an electron scattering or recombination process the free center
of the incoming electron has the functions{wi} ) {ui} ∪ {Vi},
where now the initial state of the free electron is some function
Vi the width of which is chosen on the basis of the electron
momentum and the time it takes the electron to arrive at the
target. This has to be done in such a manner that the natural
spreading of wave packets does not cause nonphysical behavior.

More flexible wave functions may be constructed. For
instance, one may choose some, sayNion, nuclei e.g. described
as in eq 2 and with no electronic basis functions centered on
them, and some, sayNA, nuclei with conventional electronic
basis functions, and finally have some, sayNF, free centers with
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basis functions as in eq 11. In a particular molecular process
some combination of these possibilities may be used.

4. General END Theory

Presentation of the possible realizations of END theory can
be done with the aide of a four-dimensional table. Each of the
four axes of this table lists two properties of the END wave
function, such that

1. single (time-evolving) geometry (SG) versus multiple
(time-evolving) geometries (MG),

2. single (time-evolving) electronic structure (SES) versus
multiple (time-evolving) electronic structures (MES),

3. single-determinant wave function (SD) versus complete
active space multiconfigurational wave function (CASMC), and

4. classical nuclei (CN) versus quantal nuclei (QN).
Of the possible 24 ) 16 entries in this table, only 12 cases

are useful. One of these is the minimal implementation of single
geometry, single electronic structure, single determinant, and
classical nuclei. The terminology introduced in this table is given
proper definition in the following.

4.1. Geometries.The termgeometryis defined to mean a
point in the generalized phase space for the total number of
centers used to describe the END wave function. The notations
R, P are used for the position and momenta vectors, such that

whereNA is the number of atomic nuclei (centers of traditional
electronic basis functions),NF the number of free electron
centers, andNion the number of nuclear centers with no basis
functions attached. These coordinates can be classical positions
and momenta when the nuclei are treated as classical particles,
or average positions and momenta when they are treated as
quantum particles.

4.2. Electronic Structures.We define anelectronic structure
to be an electronic wave function associated with ageometry.
If the electronic structure is a single determinant, then multiple
different electronic structures associated with the same geometry
is a meaningful description. One can also conceive of multiple
geometries each evolving independently with its own electronic
structure. However, it is not meaningful to consider multiple
geometries with a single electronic structure, because the Born-
Oppenheimer approximation provides such a good description.
Table 1 summarizes the combinations of geometry and elec-
tronic structure. The symbolsX and x denote the quantum
mechanical coordinates of the nuclei and the electrons, respec-
tively. The indexµ runs over electronic structures andγ over
geometries.

4.3. Configurations.The choice of wave function to be used
for the electronic structure can in principle be any of the
constructions found in electronic structure theory. However, the
choices used here are limited to wave functions that can be
classified as single- and multiconfigurational, and for the latter
only complete active space (CAS) wave functions are consid-
ered. The reason for this is that such wave functions have a
well-established coherent state description, such that dynamics
in terms of them can be constructed as a Hamiltonian system
on a well-defined phase space. The single determinant is the

Thouless coherent state3,1 |z, R, P〉, and the CASMC wave
function is the vector coherent state32 Σκ dκ|zκ, R, P〉 (see section
5.1).

4.4. Nuclei.The molecular descriptions discussed above can
all be employed with classical nuclei. Even if many processes
can successfully be described with classical nuclei, it is
sometimes necessary to use a fully quantal description of
molecules and in the END framework it is clearly possible to
do so.

One common choice of molecular wave function proceeds
by a configuration interaction (CI), i.e. a superposition of
orthogonal configurations approach, which leads to extremely
long expansions and is therefore computationally not optimal.
The END approach looks for more efficient parametrization than
is provided by linear expansion coefficients. Nonlinear de-
pendence on parameters is often a better choice. The success
of the Born-Oppenheimer (BO) approximation and the clamped
nuclei approximation implies that the classical nuclear coordi-
nates are a good starting point for parametrization. In its simplest
implementation END is derived as the narrow wave packet limit
of frozen Gaussian wave packets for the nuclei. It can be seen
from the dynamical equations, as was first pointed out by
Heller,23-27 that the structure of the equations is the same
whether one takes the zero width limit or not. Only a slight
renormalization of the matrix elements occurs, and the qualita-
tive dynamics is the same.

END considers a basis for the nuclear orbitals centered at
parametric positionsRand with nuclear momentum factors, just
like ETF’s for electrons, with momentumP. These basis
functions are denoted|s, R, P〉 for ans-type orbital (or a set of
s-type orbitals),|jk, R, P〉 (j ) x, y, z; k ) 1, 2, ...,NA) for the
p-type orbitals,|jkil , R, P〉 for the d-type orbitals, etc. It is now
possible to define a fully quantal molecular wave function,
similar to a Born-Huang series and corresponding to a single
determinant for the electrons:

A Born-Huang series uses all electronic eigenstates instead of,
as here, the derivatives of one electronic wave function. The
electronic wave function|z, R, P〉 is not an eigenstate of the
electronic Hamiltonian. The meaning of thisansatzis that it
expresses a BO type correlation between electronic and nuclear
motion. The first term is the simplest END wave function, where
this correlation is expressed only through the parametric
geometry of the basis function centersR and byP. The second
term expresses that nuclear motion in thex, y, or z directions is
correlated with specific changes in the electronic structure as
described by an infinitesimal translation (derivative) along the
respective Cartesian direction. To provide a more efficient
notation for this type of wave functions a derivative operator,

is introduced, whereω ) (ω1, ... ωl) ) (j1k1, ..., jlkl) is a l-tuple
of Cartesian coordinate indices. The combination of electronic
and nuclear wave function is shown in Table 2.

The three entries in Table 1 can now be combined with the
four entries in Table 2 to show the full set of 12 possible END

TABLE 1: The Three Meaningful Combinations of
Electronic Structure (single, SES, and multiple, MES) and
Geometry (single, SG, and multiple, MG)

SG MG

SES Ψ (X, x, R, P) not meaningful
MES Σµ cµΨµ (X, R, P) Σµ,γ cµγΨµ (X, x, Rγ, Pγ)

R ) (Rk, k ) 1, ...,NA + NF + Nion) (29)

V|s, R, P〉|z, R, P〉 + ∑
j,k

Vjk|jk, R, P〉
∂

∂Rjk

|z, R, P〉 +

∑
j,k,i,l

Vjkil|jkil , R, P〉
∂

2

∂Rjk∂Ril

|z, R, P〉 + ... (30)

¥lω ) ∂
l

∂Rω1
‚‚‚∂Rωl

(31)
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implementations. From END type 1 through 12 one can discern
an increasing flexibility, most of which is inspired by physical
problems that may not be possible to describe satisfactorily with
a wave function of simpler type. Furthermore, this hierarchy of
types is designed to allow systematic improvements with
incremental effort over the results obtained with classical nuclei.
Type 2 wave functions introduce simple multiconfigurational
structure making it possible to achieve proper spin multiplicity.
Wave functions of type 3 permit the description of two or more
open channels with nonnegligible probabilities. During, say, a
reactive encounter the geometryR1, P1 initially evolves with a
single determinant electronic description, then when a second
channel becomes active two geometries may evolve to their
respective final states, each with its own electronic structure.
Types 4, 5, and 6 add the capability to base END on CASSCF
quality electronic structure theory. CAS has been chosen because
it allows a straightforward coherent state representation, which
forms the foundation of END phase space dynamics.

The wave functions of types 7-12 duplicate types 1-6 but
with full quantum mechanical description of the nuclei. The
expansion inl for wave functions of type 7 is not expected to
be used for highl values. Rather, it is being used to “flex out”
a classical trajectory to exhibit the quantum mechanical quality.
In applications that require the full range of quantum mechanical
flexibility, for instance those where tunneling may be important,
wave functions of type 9 or 12 should be used with a grid of
geometries to cover configuration space completely and ef-
ficiently. Such calculations could probably be done with
sufficient accuracy with expansions throughl ) 2.

5. Dynamical Equations

The dynamical equations for type 1 have been published and
tested extensively in the program ENDyne2 and are reviewed
in section 2. Applications to numerous reactive collisions of
ions, atoms, and molecules have been undertaken and published
with, in general, good agreement with the best experiments for
transition probabilities, differential, and total cross sections
obtained with semiclassical corrections. The ENDyne code has
been completely rewritten in Fortran 95 during the last year to
allow the 11 other types to be implemented. Some of that effort
is work in progress.

The dynamical equations can be derived following the same
approach as for type 117 to obtain the Euler-Lagrange equations
for all dynamical variables in the last column of Table 3. An
explicit listing of these equations is far more complex than what
is useful in this type of publication. Instead the general structure
of the equations is presented and methods of solution discussed.

5.1. CASMC. In this section, the wave function of type 4 is
discussed. The theoretical foundation for END in terms of a
multiconfigurational electronic wave function using a complete
active space (CASMC), sometimes referred to as CASSCF, has
been introduced32 in terms of an orthonormal basis and with a
fixed nuclear framework. We extend this treatment here to a
nonorthogonal basis of free centers with electron translation
plane wave factors. The orbital space is divided into an occupied
or hole space and an unoccupied or particle space. The hole
space is further divided into a core space consisting of orbitals,

which are present in all configurations and an active space, some
of the orbitals of which may be occupied and some not in each
configuration.

Let N be the number of electrons andK the rank of the spin-
orbital basis. The core space, i.e. the spin-orbitals occupied in
all determinants, has dimensionK1. We denote byK2 the number
of spin-orbitals that may be occupied in some determinant.
This is the dimension of the hole space, whileK - K2 is the
dimension of the particle space. The so-called active space of
spin-orbitals has the dimensionK2 - K1. Thus, we have that
0 e K1 e N e K2 e K.

Neither are the occupied (core) orbitals and the active space
orbitals necessarily orthogonal among themselves, nor to each
other. However they are orthogonal to the unoccupied or particle
space, whose orbitals also can be mutually nonorthogonal. This
means that the CASMC electronic wave function considered
here is an expansion in a set of nonorthogonal determinants

whereκ ) (h1, ...,hN) is a comfiguration label with the indices
hi e K2 in the hole space (core plus active space), and|zκ R, P〉
is the determinant

with

The total molecular wave function is chosen as|Ψ(t)〉 )
|R(t),P(t)〉|d(t),z(t),R(t),P(t)〉 (see eq 2), and the Lagrangian is
calculated in the narrow nuclear wave packet limit. This leads
to

for the atomic nuclei without basis functions, and

TABLE 2: Single Determinantal Electronic Wavefunction
(SD) or a CASMC Wavefunction Combined with Classical
Nuclei (CN) or Quantum Nuclei (QN), Respectively

CN QN

SD |R,P〉 |z, R, P〉 Σl,ωVlω|l, ω, R, P〉¥lω|z, R, P〉
CASMC |R,P〉 Σκ dκ|zκ, R, P〉 Σl,ω,κVlωdκ|l, ω, R, P〉¥lω|zκ, R, P〉

TABLE 3: The Twelve Possible END Implementations
Using Single (SG) or Multiple (MG) Geometry, Single (SES)
or Multiple (MES) Electronic Structure, Classical (CN) or
Quantum (QN) Nuclei, and the Associated Generalized
Phase Spaces

type
geom-
etry

electronic
structure

configur-
ation nuclei END phase space

1 SG SES SD CN R, P, z
2 SG MES SD CN R, P, cµ, zµ,
3 MG MES SD CN Rγ, Pγ, cµγ, zµγ
4 SG SES CASMC CN R, P, dκ, zκ

5 SG MES CASMC CN R, P, cµ, dκµ, zκµ,
6 MG MES CASMC CN Rγ, Pγ, cµγ, dκµγzκµγ
7 SG SES SD QN R, P, Vlω, z
8 SG MES SD QN R, P, Vlω, cµ, zµ
9 MG MES SD QN Rγ, Pγ, Vlωγ, cµγ, zµγ

10 SG SES CASMC QN R, P, Vlω, dκ, zκ

11 SG MES CASMC QN R, P, Vlω, cµ, dκµ, zκµ
12 MG MES CASMC QN Rγ, Pγ, Vlωγ, cµγ, dκµγ, zκµγ

|d, z, R, P〉 ) ∑
κ

dκ|zκ R, P〉 (32)

det{øhi
(xj)} (33)

øhi
) uhi

+ ∑
p ) K2 + 1

K

upzphi
) uhi

+ ∑
p ) K2 + 1

K

up(zκ)pi (34)

π3 k ) ∑
l*k

ZkZle
2(Gk - Gl)

|Gk - Gl|3
- Tr(∇Gk

hΓ)

G3 k )
πk

Mk
(35)
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and an analogous equation for∇PkE for the atomic and free
center degrees of freedom. In addition, the dynamical equations
for the electronic parametersd and z given in ref 32 are to be
added.

5.2. Multiple Geometries.In this section types 2, 3, 5, and
6 are discussed. Specifically two electronic structures with two
geometries are considered and for clarity theP dependence is
omitted. The END wave function, then, is

To avoid redundant unphysical dimensions in the parameter
phase space the normalization is chosen such that the coefficient
of the first term is unity. The global phase can be recovered
(see ref 33). The dynamical variable expressing the configuration
mixing is c. The dynamics may lead to regions of very largec
values implying that the system state evolves to become purely
|R2〉|z2, R2〉. The differential equation solver in ENDyne
automatically switches 1 and 2 so that the new c evolves to
zero. As is the case for END type 1, the intent is to take the
narrow wave packet limit for the nuclear part of the system
wave function. However, a new issue now needs to be addressed
concerning the behavior of the Lagrangian when the limit of
zero widths (b f 0, see eq 2) is taken for the case that the
evolution goes to equal geometries (R1 ) R2). The different
scenarios are displayed in Table 4.

Let M be a diagonal matrix with nuclear masses, then write
the END Lagrangian as

with

and where the tilde means that the derivative is acting to the
left. The overlap

is again an important quantity for the dynamical metric. An
important part of the Lagrangian is

where

and so on. This means that the Lagrangian has the form

Observe that the limit of zero widths is not consistent with equal
geometries. Because the nuclear wave functions are Gaussians,
G12 is zero only at very large separations, and the only way the
limits of zero widths and equal geometries can be made
consistent is forF12 ) 0. However, such a constraint is artificial
within the END framework. The question is then to resolve this
inconsistency in taking the limit of classical nuclei.

Throughout the development of END, one of the guiding
principles in resolving apparent inconsistencies is to consider
the full quantum mechanical expression. In this particular case
the conclusion is that the widths of the nuclear wave packets
must be kept finite in all expressions leading to the TDVP
metric. For simplicity the widths are kept the same for all
geometries. The situation is different for the Hamiltonian terms.
Apart from a constant zero-point energy for each nuclear wave
packet, the kinetic energy is the classical expression1/2M-1P2.
The zero-point energy of Gaussian wave packets is not useful
and is eliminated in the END calculations because it is just a
constant energy shift. To account for zero-point vibrational
energy effects in molecular reactions, a more flexible nuclear
wave packet is required, as expressed by the wave functions of
types 7-12. The true effects are related to differences in zero-
point energies caused by changes in vibrational frequencies from
one molecular state to another. Frozen Gaussians cannot describe
such effects. The potential energy goes to the values for classical
nuclei when the limit for zero widths is taken. It is computa-
tionally more efficient to use the values obtained with classical
nuclei rather than to compute the nuclear expectation values
for the Hamiltonian terms. The electronic expectation values
are, of course, computed.

With the widths kept finite the physical content of the wave
function in eq 37 is correct. The electronic structures evolve
independently, when geometries are far apart, and interact when
geometries are close.

With the expressions in eqs 38, 40, and 41, the Lagrangian
can now be expressed as

As before the chain rule of differentiation can bring out the
explicit dependence on the parameter velocities, such that

TABLE 4: The Behavior of the Lagrangian for the Relevant
Cases of Differing Geometries and Nonzero Widths and the
Limits to Equal Geometries and Zero Widths

width/geometry R1 * R2 lim R1 f R2 R1 ) R2

b1, b2 * 0 L1 + L2 + L12 continuous L1 + L2 + L12

b1 f 0, b2 f 0 continuous continuous
b1 ) b2 ) 0 L1 + L2 L1 + L2 L1 + L2 + L12

∑
l

(CRkRl
R4 l + CRkPl

P4 l) + 2ImTr(CRk

† z3 ) + 2ImDRk

† d4

) -∇Rk
E

) Tr(∇Rk
hΓ - ∑

K,K′
dK
/∇Rk

∆ΓKK′dK′) (36)

- Tr(Tr(12∇Rk
Vab;abΓ

(2) - ∑
κ,κ′

dκ
/∇Rk

Vab;abΓκκ′
(2)dκ′)

a
)

b

|ψ〉 ) |R1〉|z1, R1〉 + c|R2〉|z2, R2〉 (37)

L ) 1
2
[P1Ṙ1 - R1Ṗ1] - 1

2
M-1P1

2 + 1
2
[P2Ṙ2 - R2Ṗ2] -

1
2
M-1P2

2 +〈Ψ|Dt - H|Ψ〉/〈Ψ|Ψ〉 (38)

Dt ) i
2[ d

dt
- d̃

dt] (39)

S) 〈R1|R1〉〈z1, R1|z1, R1〉 + 〈R2|R2〉〈z2, R2|z2, R2〉 +
c〈R1|R2〉〈z1, R1|z2, R2〉 + c* 〈R2|R1〉〈z2, R2|z1, R1〉 )

G1F1 + G2F2 + cG12F12 + c*G12
/ F12

/ (40)

K ) 〈Ψ|Dt - H|Ψ〉 ) K1 + K2|c|2 + i
2
G2F2(c* c̆ - cc̆*) +

K12c + i
2
G12F12c̆ + K12

/ c* - i
2
G12

/ F12
/ c̆* (41)

K1 ) 〈z1, R1|〈R1|Dt - H|R1〉|z1, R1〉 (42)

L ) L1 + L2 + L12 (43)

L ) 1
2
[P1Ṙl - R1Ṗ1] - 1

2
M-1P1

2 + K1(z1, R1)/S+

1
2
[P2Ṙ2 - R2Ṗ2] - 1

2
M-1P1

2 + K2(z2, R2)|c|2/S+

i
2
[G2F2c* + G12F12]c̆/S- i

2
[G2F2c + G12

/ F12
/ ]c̆*/S+

K12c/S+ K12
/ c*/S. (44)
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i.e., obviously referring to two coupled systems, where we have
omitted the total derivative

used to eliminateṖ and where

including the nuclear-nuclear repulsion energy. In analogy with
the simplest END (type 1) approximation (see ref 17 and eq 6),
the conjugate momenta to the z,R, and c dynamical variables
are

and

respectively.
The Euler-Lagrange eqs 7 forq ) z1, z2, R1, R2, andc then

yield the END dynamical equations. The structure of the END
theory is such that all the ingredients of the equations for the
type 1 wave function can be reused. The only additional feature
being F12 and its derivatives. Because of the analyticity of
F12(z1

/, z2), a property of the coherent state representation, it is
a straightforward extension ofF1(z1

/. z1). The overlap (eq 40)
and the momenta depend onF12 yielding more complex
expressions for the dynamical metric than is the case for type
1, but otherwise the structure of the dynamical equations is the
same as for the simplest case.

This completes the analysis for the cases of multiple
geometries and a single determinant for the electronic structures,
i.e., types 1 and 2. The corresponding analysis for the CASMC
types of electronic structures is completely analogous. The
equations are, like those of higher order coupled cluster theory,
better left to computer manipulations.

5.3. Quantum Nuclei.This section deals with wave function
types 7-12. Because the END wave function with multiple
geometries is already formulated with Gaussian wave packets,
the extension to full quantum nuclei with the flexibility to
employ arbitrary nuclear wave functions is fairly straightforward.
The wave function in eq 30 is constructed from products of
Gaussian type orbitals for the nuclear degrees of freedom and
derivatives of electronic structure wave functions with respect
to such degrees of freedom. For small systems it is often

advantageous to use internal degrees of freedom, while for larger
systems this is not that important. The geometryR for the wave
function in eq 30 can be considered to be either laboratory or
internal coordinates. The theory works for both cases. The
structure of the Lagrangian for such a wave function is the same
as that for the type 2 and 3 wave functions with the change
that the nuclear and electronic parts have different forms instead
of just depending on different sets of parameters.

Considering the expansion only throughl ) 1 the wave
function can be expressed as

where again the normalization has been chosen such that the
coefficient of the first term is 1 to avoid redundant dimensions
in phase space. The Lagrangian now is simply

and explicitly showing the time derivatives one can write

with E ) 〈Ψ|H|Ψ〉/〈Ψ/Ψ〉, i.e., the full molecular expectation
value including the nuclear kinetic energy terms. The conjugate
momenta to the dynamical variablesR, z, andVk are

and

Here the definitions ofF, G, andGk should be evident from
the analogy with the definitions in eq 40. The matrix elements
required are higher derivatives of the kind that has been dealt
with before.

Implementations of second-order derivatives already exists
for the construction of dynamical equations with expansions
throughl ) 1. The PRISM algorithm has been implemented to
arbitrary order, which will allow the development of END with
wave functions of type 7-12. Written in Fortran 95, it is
structured to exploit both multithreading shared memory and
MPI distributed memory parallelism. It has been designed both
as an extension to Tcl and Python and has both Tcl and Python
imbedded in it. This has been done with the aim to allow more
flexibility in using advanced features (extension) and to support
rapid prototyping of the complex wave functions discussed in
this paper (embedding). The redesigned ENDyne version 5 is
now nearly complete.

6. Conclusion

The complete design ideas of the END theory and our vision
for its implementation have been discussed in some detail. It
should be clear from this discussion that END provides a
smooth, practical, and efficient hierarchy of descriptions of

L ) 1
2
[P1 + Q1]Ṙ1 + i

2
[ω1

/z̆1 - ω1
/z̆

/

1] + 1
2
[P2 + Q2]Ṙ2 +

i
2
[ω2

/z̆2 - ω2
/z̆

/

2] + i
2
[a* c̆ - ac̆*] - 1

2
M-1P1

2 - 1
2
M-1P2

2 - E

(45)

d
dt

[P1R1 + P2R2] (46)

E ) 〈Ψ|Hel|Ψ〉/S (47)

ω1 )
G1

S

∂F1

∂z1
/

+
G12c

S

∂F12

∂z1
/

ω2 )
G2

S

∂F2

∂z2
/

+
G12

/ c*

S

∂F12
/

∂z2
/

(48)

P1 + Q1 ) P1 - Im[G1

S

∂F1

∂R1
+

G12c

S

∂F12

∂R1
]

P2 + Q2 ) P2 - Im[G2

S

∂F2

∂R2
+

G12
/ c*

S

∂F12
/

∂R2
] (49)

a ) [G2F2c + G12
/ F12

/ ]/S (50)

|Ψ〉 ) |R〉|z, R〉 + ∑
k

Vk|Rk〉
∂

∂Rk

|z, R〉 (51)

L ) 〈Ψ|Dt - H|Ψ〉/〈Ψ/Ψ〉 (52)

L )
1

2
QṘ+

i

2
[ω* z̆ - ωz̆*] +

i

2
∑

k

[uk
/V̆k - ukV̆k

/] - E (53)

Q ) -Im[FS ∂G

∂R
+ ∑

k

1

S

∂F

∂Rk

∂Gk

∂R
+

G

S

∂F

∂R
+ ∑

k

Gk

S

∂
2F

∂z*∂Rk
]

(54)

ω )
G

S

∂F

∂z*
+ ∑

k

Gk

S

∂F

∂Rk

uk ) Gk
∂F
∂Rk

Vk (55)
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molecular processes, that ranges from classical nuclei with a
single END determinant for the electrons to a full quantum
mechanical description with CASMC wave functions for the
electrons.
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(33) Löwdin, P.-O.; Mukherjee, P. K.Chem. Phys. Lett. 1972, 14, 1.

Electron Nuclear Dynamics J. Phys. Chem. A, Vol. 105, No. 12, 20012667


